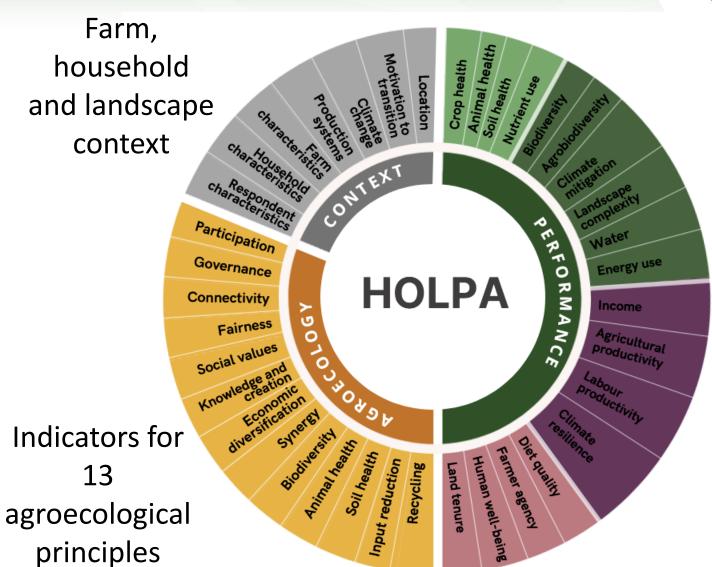


Holistic Localized Performance Assessment (HOLPA)

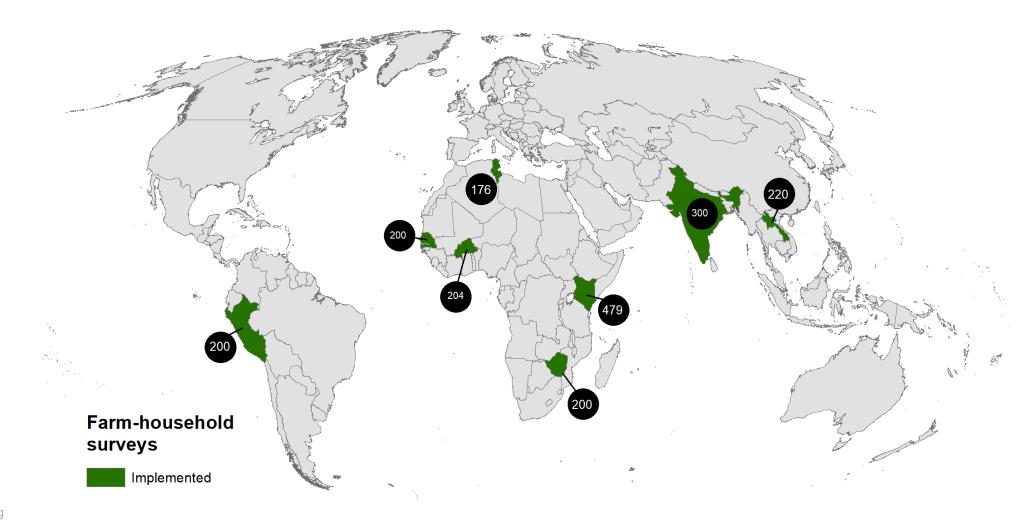
tool for collecting evidence on the impact of agroecology


17 December 2024

Sarah Jones & Andrea Sánchez s.jones@cgiar.org andrea.sanchez@cgiar.org

What is HOLPA?

 Survey-based tool co-developed through a review of existing metrics, tools and approaches, participatory consultative workshops with AE-I staff and partners, and **piloting** in-field with farmers



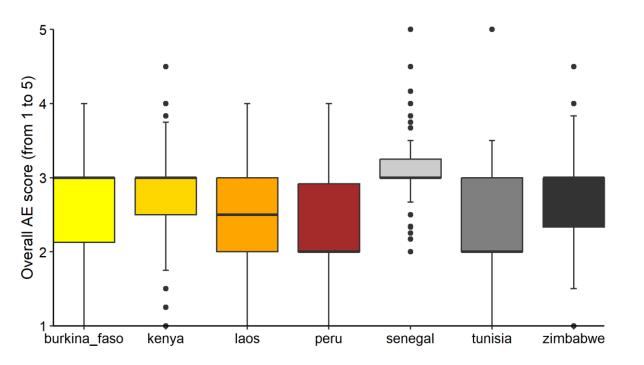
Indicators for 18 performance themes

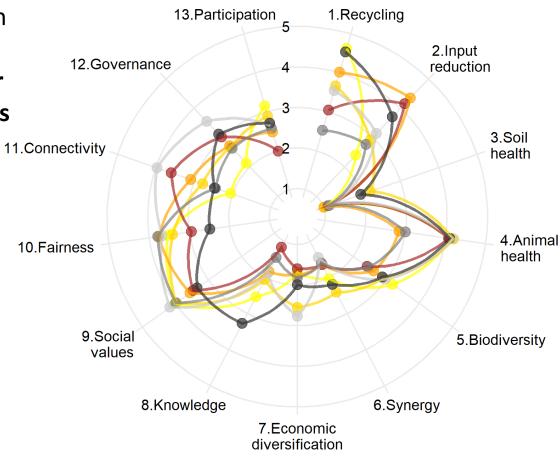
HOLPA implementation to date

> 1979 farm-households across 8 countries between March and October 2024

Research questions

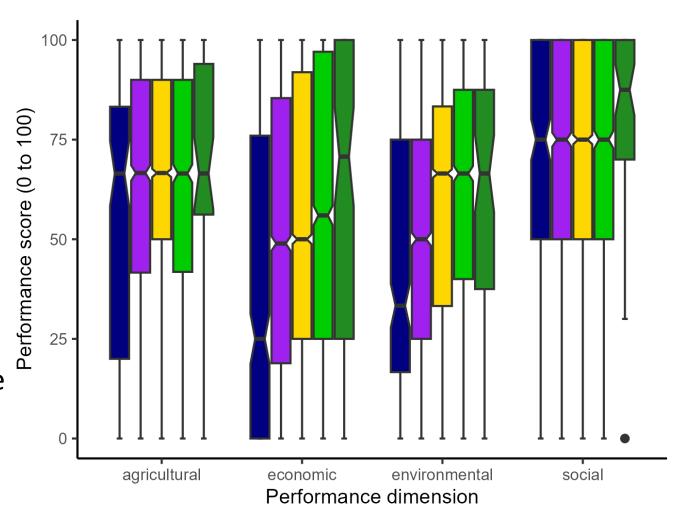
- 1. How does farm-household adherence to agroecology vary across landscapes in Burkina Faso, (India), Kenya, Laos, Peru, Senegal, Tunisia, and Zimbabwe?
- 2. How does the agronomic, environmental, social and economic performance vary across farm-households at different levels of adherence to agroecology?

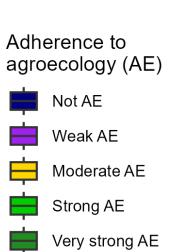




Result 1 – adherence to agroecology

- Moderate adherence to agroecology (score 2 to 3) with Senegal, Kenya and Burkina Faso in advance
- Divergence in adherence to recycling (1), input reduction (2), knowledge (8), fairness (10), connectivity (11), governance (12) − highlighting different entry points for agroecology transitions across countries and landscapes





Result 2 –agroecology performance

Consistent trend towards higher performance scores with increasing adherence to agroecology, across economic, environment, and social performance dimensions

Result 3 – agroecology performance

			_						
	Human wellbeing (qual) =	0.2**	0.7**	0.2**	0.2**	0.1	0.4**	0	0.1
SOC	Land security (% owned) -	-0.1*	0.1	0	-0.1	0.1	0.1	-0.1	0.1
	Land security (qual) =	0.1**	0.6**	0.1*	0	-0.1	0.2*	-0.1	0.1
	Farmer agency (qual) 🚽	-0.1**	-0.7**	0.1	0	-0.1	0	0	0.1
	Diet diversity (MFGD)	0.2**	0.4**	0.2**	0.2**	0	0.2**	0.1	0.5**
	Avoided irrigation water stress (% months) -	0	_	0.2				-0.2	
	Avoided ag water stress (% months) -	0	-0.2**	-0.1	-0.3**	0.2**	0	0.1	0.2**
ENV	Climate mitigation (qual) -	0	0.1	0	0	0.1	0.1	-0.1	0.2*
ш	Landscape complexity (qual) -	0.1**	0.6**	0.1*	0.3**	0.3**	0.1	0	0.2**
	Varietal diversity (qual) -	0	-0.6**	0	0.2**	0.3**	-0.2*	0.2**	-0.1
	Crop richness (versus max) -	0.3**	0.4**	0.3**	0.3**	0.3**	0.2**	0.3**	0.2*
	Tree diversity (qual) -	0.3**	0.4**	0.3**	0.2**	0.3**	0.3**	0.1	0.3**
	Animal diversity (qual) -	0.2**	0.6**	0.3**	0.3**	0	0.2*	0.1	0.2**
	Energy sustainability (qual) -	0.3**	0.4**	0.1**	0.1	0.1*	-0.3**	0	-0.2*
ECO	Recovery after shocks (qual) -	0.2**	0.4**	0.1**	0.2*	0	0.2**	0.1	0.2**
Ш	Climate resilience (RIMA) -	0.3**	-0.2**	0.3**	0.5**	0.2*	0.3**	0.2**	0.5**
	Labour productivity (USD/hrs/yr) -	-0.1*	0.1	0	0	-0.1	0	0	0
	Reduced labour input (hrs/yr/ha) -	0	-0.4**	-0.1**	0	-0.1	0	0	-0.1
~	Yield gap (%)	0.1**	0.5**	-0.1	-0.1	-0.1	0	-0.2*	-0.2**
AGR	HH income sufficiency (qual) -	0.2**	0.4**	0.3**	0.3**	0.1*	0.4**	0.2*	0.3**
A	HH income versus expenditures (binary)	0.1**	0	0.1**	0	-0.2**	0.4**	0	0.1
	HH income stability (qual) -	0.2**	0.1	0.2**	0.1*	0.1	0.1	0.1	0.3**
	HH income (versus average) -	0.1*	0.1	0.1	0.3**	0	0	0.1	0
	Nutrient use (versus average) -	0	0.3**	-0.1	0.5**	-0.1	0.1	0	0.2*
	Soil health (qual) -	-0.1**	-0.1	0	0	0.1	0.1	-0.1	0
	Animal health (qual) -	0	0.5**	-0.1	-0.2	0.1	0.1	0.1	0.1
	Crop health (SOCLA) -	0.1	-0.6**			0.2**	0.3**	0	0.1
	Crop health (% loss)	0.2**	-0.7**	0.2**	0.1	-0.2*		0.2**	0.4**
		All	burkina_faso	kenya	laos	peru	senegal	tunisia	zimbabwe

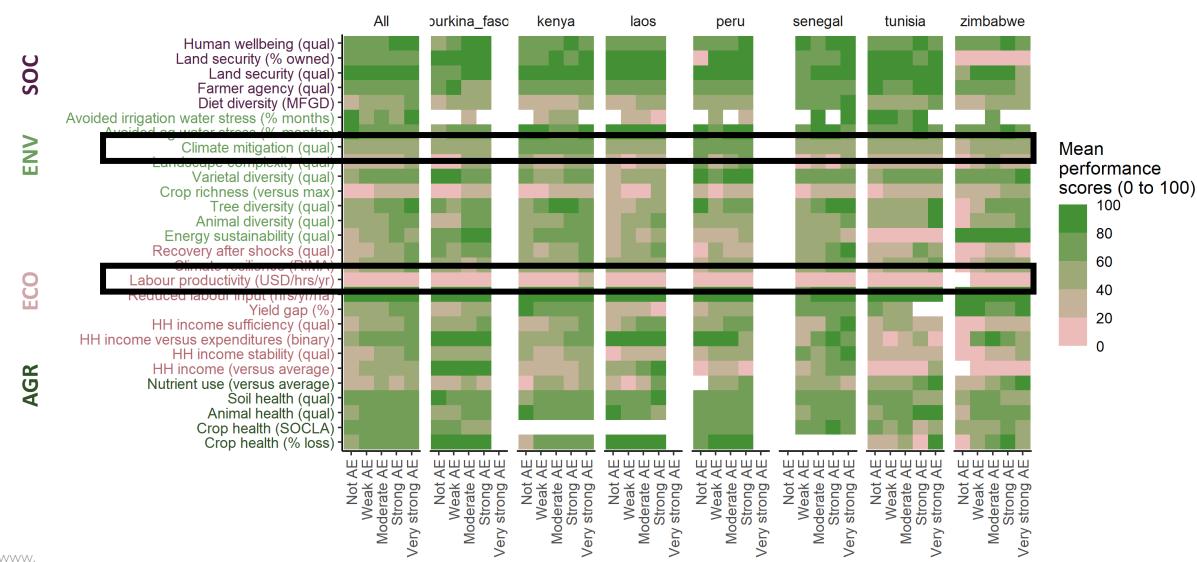
Correlation 0.4 0.0 -0.4

Result 3 – agroecology performance

On average, agroecology has a positive effect on biodiversity (tree diversity, crop species richness), energy use, climate resilience, human wellbeing, nutrition, income, and crop health

Human wellbeing (qual)	0.2**	0.7**	0.2**	0.2**	0.1	0.4**	0	0.1
Land security (% owned)	-0.1*	0.1	0	-0.1	0.1	0.1	-0.1	0.1
Land security (qual) -	0.1**	0.6**	0.1*	0	-0.1	0.2*	-0.1	0.1
Farmer agency (qual) -	-0.1**	-0.7**	0.1	0	-0.1	0	0	0.1
Diet diversity (MFGD)	0.2**	0.4**	0.2**	0.2**	0	0.2**	0.1	0.5**
Avoided irrigation water stress (% months)	0		0.2				-0.2	
Avoided ag water stress (% months) -	0	-0.2**	-0.1	-0.3**	0.2**	0	0.1	0.2**
Climate mitigation (qual)	0	0.1	0	0	0.1	0.1	-0.1	0.2*
Landscape complexity (qual)	0.1**	0.6**	0.1*	0.3**	0.3**	0.1	0	0.2**
Varietal diversity (qual)	0	-0.6**	0	0.2**	0.3**	-0.2*	0.2**	-0.1
Crop richness (versus max)	0.3**	0.4**	0.3**	0.3**	0.3**	0.2**	0.3**	0.2*
Tree diversity (qual)	0.3**	0.4**	0.3**	0.2**	0.3**	0.3**	0.1	0.3**
Animal diversity (qual) -	0.2**	0.6**	0.3**	0.3**	0	0.2*	0.1	0.2**
Energy sustainability (qual) =	0.3**	0.4**	0.1**	0.1	0.1*	-0.3**	0	-0.2*
Recovery after shocks (qual)	0.2**	0.4**	0.1**	0.2*	0	0.2**	0.1	0.2**
Climate resilience (RIMA)	0.3**	-0.2**	0.3**	0.5**	0.2*	0.3**	0.2**	0.5**
Labour productivity (USD/hrs/yr)	-0.1*	0.1	0	0	-0.1	0	0	0
Reduced labour input (hrs/yr/ha)	0	-0.4**	-0.1**	0	-0.1	0	0	-0.1
Yield gap (%)	0.1**	0.5**	-0.1	-0.1	-0.1	0	-0.2*	-0.2**
HH income sufficiency (qual)	0.2**	0.4**	0.3**	0.3**	0.1*	0.4**	0.2*	0.3**
HH income versus expenditures (binary)	0.1**	0	0.1**	0	-0.2**	0.4**	0	0.1
HH income stability (qual)	0.2**	0.1	0.2**	0.1*	0.1	0.1	0.1	0.3**
HH income (versus average)	0.1*	0.1	0.1	0.3**	0	0	0.1	0
Nutrient use (versus average)	0	0.3**	-0.1	0.5**	-0.1	0.1	0	0.2*
Soil health (qual) -	-0.1**	-0.1	0	0	0.1	0.1	-0.1	0
Animal health (qual) -	0	0.5**	-0.1	-0.2	0.1	0.1	0.1	0.1
Crop health (SOCLA)	0.1	-0.6**			0.2**	0.3**	0	0.1
Crop health (% loss) -	0.2**	-0.7**	0.2**	0.1	-0.2*		0.2**	0.4**
	All	burkina_faso	kenya	laos	peru	senegal	tunisia	zimbabwe

Mixed/no effect on climate mitigation or water conservation


Mixed/negative
 effect on labour
 productivity, soil
 health, farmer
 agency, land tenure
 security (or vice versa)

Lluman wallhaina (aual)	0.2**	0.7**	0.2**	0.2**	0.1	0.4**	0	0.1
Human wellbeing (qual)								
Land security (% owned)	-0.1*	0.1	0	-0.1	0.1	0.1	-0.1	0.1
Land security (qual)	0.1**	0.6**	0.1*	0	-0.1	0.2*	-0.1	0.1
Farmer agency (qual)	-0.1**	-0.7**	0.1	0	-0.1	0	0	0.1
Diet diversity (MFGD)	0.2**	0.4**	0.2**	0.2**	0	0.2**	0.1	0.5**
Avoided irrigation water stress (% months)	0	0.044	0.2	0.044	0.044	•	-0.2	0.044
Avoided ag water stress (% months) -	0	-0.2**	-0.1	-0.3**	0.2**	0	0.1	0.2**
Climate mitigation (qual)	0	0.1	0	0	0.1	0.1	-0.1	0.2*
Landscape complexity (qual) =	0.1**	0.6**	0.1*	0.3**	0.3**	0.1	0	0.2**
Varietal diversity (qual)	0	-0.6**	0	0.2**	0.3**	-0.2*	0.2**	-0.1
Crop richness (versus max)	0.3**	0.4**	0.3**	0.3**	0.3**	0.2**	0.3**	0.2*
Tree diversity (qual)	0.3**	0.4**	0.3**	0.2**	0.3**	0.3**	0.1	0.3**
Animal diversity (qual)	0.2**	0.6**	0.3**	0.3**	0	0.2*	0.1	0.2**
Energy sustainability (qual)	0.3**	0.4**	0.1**	0.1	0.1*	-0.3**	0	-0.2*
Recovery after shocks (qual)	0.2**	0.4**	0.1**	0.2*	0	0.2**	0.1	0.2**
Climate resilience (RIMA) =	0.3**	-0.2**	0.3**	0.5**	0.2*	0.3**	0.2**	0.5**
Labour productivity (USD/hrs/yr) -	-0.1*	0.1	0	0	-0.1	0	0	0
Reduced labour input (hrs/yr/ha) =	0	-0.4**	-0.1**	0	-0.1	0	0	-0.1
Yield gap (%)	0.1**	0.5**	-0.1	-0.1	-0.1	0	-0.2*	-0.2**
HH income sufficiency (qual)	0.2**	0.4**	0.3**	0.3**	0.1*	0.4**	0.2*	0.3**
HH income versus expenditures (binary)	0.1**	0	0.1**	0	-0.2**	0.4**	0	0.1
HH income stability (qual)	0.2**	0.1	0.2**	0.1*	0.1	0.1	0.1	0.3**
HH income (versus average)	0.1*	0.1	0.1	0.3**	0	0	0.1	0
Nutrient use (versus average)	0	0.3**	-0.1	0.5**	-0.1	0.1	0	0.2*
Soil health (qual) -	-0.1**	-0.1	0	0	0.1	0.1	-0.1	0
Animal health (qual)	0	0.5**	-0.1	-0.2	0.1	0.1	0.1	0.1
Crop health (SOCLA)	0.1	-0.6**			0.2**	0.3**	0	0.1
Crop health (% loss)	0.2**	-0.7**	0.2**	0.1	-0.2*		0.2**	0.4**
	All	burkina_faso	kenya	laos	peru	senegal	tunisia	zimbabwe

0.4 0.0 -0.4

Result 4 – agroecology performance

Take-away messages

- 1. Across the 7 countries, most farms are showing signs of weak to moderate adherence to agroecology
- 2. Agroecology makes sense for biodiversity, climate resilience, nutrition, human wellbeing, income: all are positively correlated with adherence to agroecology
- 3. Some performance aspects are **not significantly affected by agroecology**, including labour productivity which remains low in all countries, and climate mitigation which has variable scores
- 4. Next set of analyses will focus on **gathering deeper insights** on relationship between agroecology and performance as farm context varies, and what motivates and enables farmers to transition to agroecology, to **strengthen evidence and support upscaling**

Thank you to the HOLPA WP2 country teams, their partners, and all participating farmers

- •<u>Alliance BI-CIAT</u> and <u>IWMI</u>- lead centers
- •CIMMYT
- •CIP
- •ICARDA
- •IFPRI
- •IITA
- •WorldFish
- •CIFOR-ICRAF, Cirad, TPP, GIZ, Biovision
- •35 national institutions (national agricultural research institutes, NGOs, cooperatives, universities)
- •1979 farmers

www.cgiar.org